Relationship between macromolecules polymers and monomers table

Types of Monomers | Sciencing

relationship between macromolecules polymers and monomers table

Monomer is a word made of two parts, mono means one, and mer means unit, so monomers are the building units of the badz.info means. Biological macromolecules are polar THE RESULTING POLYMERS ALSO to tail condensation of polar monomers. . the relationship between the structures of. Proteins and nucleic acids are two examples of polymers. There are four basic kinds of biological macromolecules. They are carbohydrates In hydrolysis, water interacts with a polymer causing bonds that link monomers to each other to be broken. Sucrose or table sugar is a well known carbohydrate.

For example, sucrose table sugar is a disaccharide that derives from adding two monomers, glucose and fructose. Other disaccharides include lactose sugar in milk and maltose a byproduct of cellulose.

An enormous polysaccharide made from many monomers, starch serves as the chief storage of energy for plants, and it cannot be dissolved in water. Starch is made from a huge number of glucose molecules as its base monomer. Starch makes up seeds, grains and many other foods that people and animals consume. The protein amylase works to revert starch back into the base monomer glucose.

Glycogen is a polysaccharide used by animals for energy storage. Glycogen differs from starch by having more branches. When cells need energy, glycogen can be broken down via hydrolysis back into glucose. Long chains of glucose monomers also make up cellulose, a linear, flexible polysaccharide found around the world as a structural component in plants.

Many animals cannot fully digest cellulose, with the exception of ruminants and termites. Another example of a polysaccharide, the more brittle macromolecule chitin, forges the shells of many animals such as insects and crustaceans. Simple sugar monomers such as glucose therefore form the basis of living organisms and yield energy for their survival.

Monomers of Fats Fats are a type of lipids, polymers that are hydrophobic water repellent.

relationship between macromolecules polymers and monomers table

The base monomer for fats is the alcohol glycerol, which contains three carbons with hydroxyl groups combined with fatty acids. Fats yield twice as much energy as the simple sugar, glucose. For this reason fats serve as a kind of energy storage for animals.

How are monomers, polymers, and macromolecules related to each other? | Socratic

Fats with two fatty acids and one glycerol are called diacylglycerols, or phospholipids. Lipids with three fatty acid tails and one glycerol are called triacylglycerols, the fats and oils.

Fats also provide insulation for the body and the nerves within it as well as plasma membranes in cells. Monomers of Proteins An amino acid is a subunit of protein, a polymer found throughout nature. An amino acid is therefore the monomer of protein. Proteins provide numerous functions for living organisms. Several amino acid monomers join via peptide covalent bonds to form a protein.

Two bonded amino acids make up a dipeptide. Three amino acids joined make up a tripeptide, and four amino acids make up a tetrapeptide. With this convention, proteins with over four amino acids also bear the name polypeptides. Of these 20 amino acids, the base monomers include glucose with carboxyl and amine groups. Glucose can therefore also be called a monomer of protein. The amino acids form chains as a primary structure, and additional secondary forms occur with hydrogen bonds leading to alpha helices and beta pleated sheets.

Folding of amino acids leads to active proteins in the tertiary structure. Additional folding and bending yields stable, complex quaternary structures such as collagen.

Collagen provides structural foundations for animals. The protein keratin provides animals with skin and hair and feathers. Proteins also serve as catalysts for reactions in living organisms; these are called enzymes.

Proteins serve as communicators and movers of material between cells. For example, the protein actin plays the role of transporter for most organisms. The varying three-dimensional structures of proteins lead to their respective functions. Changing the protein structure leads directly to a change in protein function. Nucleotides as Monomers Nucleotides serve as the blueprint for the construction of amino acids, which in turn comprise proteins.

Nucleotides store information and transfer energy for organisms. Nucleotides are the monomers of natural, linear polymer nucleic acids such as deoxyribonucleic acid DNA and ribonucleic acid RNA.

Nucleotide monomers are made of a five-carbon sugar, a phosphate and a nitrogenous base. Bases include adenine and guanine, which are derived from purine; and cytosine and thymine for DNA or uracil for RNAderived from pyrimidine.

The combined sugar and nitrogenous base yield different functions. Nucleotides form the basis for many molecules needed for life. One example is adenosine triphosphate ATPthe chief delivery system of energy for organisms. Adenine, ribose and three phosphate groups make up ATP molecules. Phosphodiester linkages connect the sugars of nucleic acids together. These linkages possess negative charges and yield a stable macromolecule for storing genetic information. RNA, which contains the sugar ribose and adenine, guanine, cytosine and uracil, works in various methods inside cells.

RNA exists in a single-helix form. DNA is the more stable molecule, forming a double helix configuration, and is therefore the prevalent polynucleotide for cells. DNA contains the sugar deoxyribose and the four nitrogenous bases adenine, guanine, cytosine and thymine, which make up the nucleotide base of the molecule.

The long length and stability of DNA allows for storage of tremendous amounts of information.

relationship between macromolecules polymers and monomers table

Monomers for Plastic Polymerization represents the creation of synthetic polymers via chemical reactions. When monomers are joined together as chains into manmade polymers, these substances become plastics. The monomers that make up polymers help determine the characteristics of the plastics they make. All polymerizations occur in a series of initiation, propagation and termination. It is stored in the liver and muscles. Cellulose is a polysaccharide produced by plants. Its is a component of the cell walls.

Cellulose is also a string of glucose molecules. Because the glucoses are joined together differently cellulose has a different shape, and therefor different properties, than starch or glycogen.

The enzymes we'll learn more about these soon that are used to hydrolyze starch don't work on cellulose. Most organisms cannot digest cellulose and it passes right through them roughage. Goats and termites don't really digest cellulose, they have bacteria that do it for them. Chitin is an important polysaccharide used to make the exoskeletons of arthropods.

Macromolecule Table of Monomers and Polymers by Gavin Caruso on Prezi

Lipids Lipids are all similar in that they are at least in part hydrophobic. There are three important families of lipids: Fats Fats are large molecules made of two types of molecules, glycerol and some type of fatty acid.

The fatty acid has a long chain of carbon and hydrogen, usually referred to as the hydrocarbon tail, with a carboxyl group head. The carboxyl group is why its called an acid. Glycerol has three carbons 3. These can be the same three or different. This arrangement of three is why fats are called triglycerides.

Fats may be saturated or unsaturated. This has to do with the amount of hydrogen in the tail. Unsaturated fatty acids have some hydrogen missing, with double bonds replacing them. The double bond give the fatty acid a kink 3. Saturated fats are solid at room temperature and come from animals, unsaturated fats come from plants and are liquid at room temperature. Fats are used as a high density energy storage in animals and in plants seeds. It may also be used in animals for insulation.

Phospholipids Phospholipids are like fats but they have two fatty acids and a phosphate group joined to glycerol. The fatty acid tails are hydrophobic but the phosphate part is hydrophilic.

Monomers vs Polymers - Biology Tutorial

This is an important feature of these molecules. More about phospholipids when we cover membrane structure. Steroids Steroids are also lipids but they have a carbon skeleton of four connected rings no glycerol here 3.

MACROMOLECULES

The different properties of different steroids are due to the attached functional groups. Cholesterol is a steroid that can be modified to form many hormones. Proteins Proteins are extremely important. They are large, complex molecules that are used for structural support, storage, to transport substances, and as enzymes.

They are a sophisticated, diverse group of molecules, and yet they are all polymers of just 20 amino acids.

How are monomers, polymers and macromolecules related?

Amino acids have a carbon attached to a hydrogen, an amino group, a carboxyl group and something else R. Its the something else that give the amino acid its characteristics 3. Amino acids are joined together by peptide bonds dehydration synthesis 3. Polypeptide chains are strings of amino acids, joined by peptide bonds.

relationship between macromolecules polymers and monomers table

Proteins are formed by twisting up one or more poly peptide chains. It is the shape, or conformation, of the protein that gives it its properties.

relationship between macromolecules polymers and monomers table

There are four levels of protein structure. Primary structure is the unique series of amino acids. The secondary structure results from hydrogen bonds along the chain which cause repeated coiled or folded patterns.

relationship between macromolecules polymers and monomers table

The tertiary structure is superimposed on the secondary structure. It is the irregular contortions formed by bonding between the R groups. Some R groups of amino acids have sulfhydryl groups which bond together to for disulfide bridges. Quaternary structure results when the protein is made up of more than one polypeptide subunits for example hemoglobin, which has four polypeptide subunits.

Quaternary structure is the relationship of these subunits. Figure on pg 45 for summary When a protein's structure has been altered we say it has been denatured.

Denaturing occurs when the hydrogen bonds that are holding parts of the molecule to other parts come apart. Usually as a result of exposure to extremes of pH or heat. Some denaturing is reversible some is irreversible. Cooking eggs denatures the proteins in the egg whites.